Semidiscrete Least-Squares Methods for Second Order Parabolic Problems With Nonhomogenous Data
نویسندگان
چکیده
منابع مشابه
Semidiscrete-Least Squares Methods for a Parabolic Boundary Value Problem
In this paper some approximate methods for solving the initial-boundary value problem for the heat equation in a cylinder under homogeneous boundary conditions are analyzed. The methods consist in discretizing with respect to time and solving approximately the resulting elliptic problem for fixed time by least squares methods. The approximate solutions will belong to a finite-dimensional subspa...
متن کاملLeast Squares for Second Order Elliptic Problems
In this paper we introduce and analyze two least squares methods for second order elliptic di erential equations with mixed boundary conditions These methods extend to problems which involve oblique derivative boundary conditions as well as nonsym metric and inde nite problems as long as the original problem has a unique solution With the methods to be developed Neumann and oblique boundary con...
متن کاملPerformance of first- and second-order methods for \(\ell _1\) -regularized least squares problems
We study the performance of firstand second-order optimization methods for `1-regularized sparse least-squares problems as the conditioning of the problem changes and the dimensions of the problem increase up to one trillion. A rigorously defined generator is presented which allows control of the dimensions, the conditioning and the sparsity of the problem. The generator has very low memory req...
متن کاملGMRES Methods for Least Squares Problems
The standard iterative method for solving large sparse least squares problems min ∈Rn ‖ −A ‖2, A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned) conjugate gradient method to the normal equation ATA = AT . In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the Generalized Minimal Residual (GMRES) method to min ∈R...
متن کاملNumerical methods for generalized least squares problems
Usually generalized least squares problems are solved by transforming them into regular least squares problems which can then be solved by well-known numerical methods. However, this approach is not very effective in some cases and, besides, is very expensive for large scale problems. In 1979, Paige suggested another approach which consists of solving an equivalent equality-constrained least sq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1974
ISSN: 0025-5718
DOI: 10.2307/2005916